Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice
نویسندگان
چکیده
Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the aetiology and treatment. We sought to determine whether Thymosin β4 (Tβ4), a peptide that regulates the availability of actin monomers for polymerization in non-muscle cells, plays a role in sarcomere assembly during cardiac morphogenesis and influences adult cardiac function. In Tβ4 null mice, immunofluorescence-based sarcomere analyses revealed shortened thin filament, sarcomere and titin spring length in cardiomyocytes, associated with precocious up-regulation of the short titin isoforms during the postnatal splicing transition. By magnetic resonance imaging, this manifested as diminished stroke volume and limited contractile reserve in adult mice. Extrapolating to an in vitro cardiomyocyte model, the altered postnatal splicing was corrected with addition of synthetic Tβ4, whereby normal sarcomere length was restored. Our data suggest that Tβ4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle. Distinguishing between thin filament extension and titin splicing as the primary defect is challenging, as these events are intimately linked. The regulation of titin splicing is a previously unrecognised role of Tβ4 and gives preliminary insight into a mechanism by which titin isoforms may be manipulated to correct cardiac dysfunction.
منابع مشابه
Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm20ΔRRM Mice
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more comp...
متن کاملDeletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.
Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with my...
متن کاملDepletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands.
The genetic study of titin has been notoriously difficult because of its size and complicated alternative splicing routes. Here, we have used zebrafish as an animal model to investigate the functions of individual titin isoforms. We identified 2 titin orthologs in zebrafish, ttna and ttnb, and annotated the full-length genomic sequences for both genes. We found that ttna, but not ttnb, is requi...
متن کاملThymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis
Previously, we found thymosin β4 (Tβ4) is upregulated in glomerulosclerosis and required for angiotensin II-induced expression of plasminogen activator inhibitor-1 (PAI-1) in glomerular endothelial cells. Tβ4 has beneficial effects in dermal and corneal wound healing and heart disease, yet its effects in kidney disease are unknown. Here we studied renal fibrosis in wild-type and PAI-1 knockout ...
متن کاملThymosin β4 is not required for embryonic viability or vascular development.
RATIONALE Rossdeutsch et al describe a requirement for thymosin β4 (Tβ4) in vascular development. Impaired mural cell migration, differentiation, partial embryonic lethality, and hemorrhaging were observed after analysis of 2 lines of mice, one of which was germline null for Tβ4 and another in which Tβ4 was knocked down by endothelial-specific expression of Tβ4 short hairpin RNA. These data are...
متن کامل